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Abstract:

Background:

Lesotho is the country located in the Sub-Saharan region of Africa countries where under-five mortality (U5M) is still a big issue due to some
significant social and demographic risk factors. Hence, the investigation of some social and demographic factors that are associated with the U5M,
is a critical problem that needs due consideration.

Methods:

This  study  used  the  2014  Lesotho  Demographic  and  Health  Survey  (LDHS)  that  had  a  sample  of  over  9000  representative  households.
Individually, data consisting of a nationally representative sample of 9,543 households in the 2014 Lesotho Demographic and Health Survey were
analysed. The Random Walk second-order (RW2) model was adopted for analysis.  Maps construction and modelling were done through the
spatially structured and unstructured random effects using the Gaussian Markov Random Field and a zero-mean Gaussian process, respectively.
The full Bayesian inference was adopted to produce the results using the Integrated Nested Laplace Approximation (INLA) function in R-software.

Results:

In this study, age at death of an under-five child was found to have a linear association with the U5M in Lesotho. The non-stationary models
outperform the stationary models. The low-risk pattern was found in the north of Lesotho, and the highest risk occurs in the centre through the
south, east, west, southeast, and northwest. Breastfeeding has contributed significantly to under-five mortality to most of Lesotho districts.

Conclusion:

This study adopted the newly developed statistical models to model and mapped the U5M in Lesotho. The full Bayesian inference was used to
produce the results using R-INLA package. The findings from this study can help introduce new policies that will help reduce disparity in Lesotho.
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1. INTRODUCTION

Under-five  Mortality  (U5M) is  the  probability  of  a  child
dying between birth and exactly five years of age expressed per
1000 live birth [1]. In the whole world, reducing child death as
well as improving child health are significant concerns of the
development  agencies  and  the  international  public  health
communities  [2].  Most  of  the  under-five  deaths  are  due  to
infectious  diseases  and  injuries;  and  these  deaths  reflect  the
limited access of under-five children and communities to esse-
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ntial  health  interventions  such  as  vaccination,  medication  of
contagious  illnesses,  adequate  nutrition,  and clean water  and
sanitation [3].

Under-five  mortality  is  a  serious  public  health  issue  in
Lesotho  [4].  Lesotho  is  in  the  SDG  region,  which  aims  to
reduce the mortality  rate  to an average of  25 death per  1000
live births under the sustainable development goal before 2030
[5].  Still,  this  goal  seems  to  be  impossible  due  to  ups  and
downs of  the death rate  of  under-five child death in Lesotho
due to social and demographics factors that are associated with
child survival. Previously, there has been little Statistical work
concerning  under-five  mortality  in  Lesotho,  especially  using
the recently developed spatial mapping models. In this paper,
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we  followed  the  Bayesian  techniques,  which  has  numerous
advantages over frequentist Statistics in terms of inferring the
model parameters of interest. When the covariates are spatially
indexed, the non-spatial and spatial stationary regression tends
to  give  inadequate  predictions  due  to  ignoring  the  spatial
dependences.  If  the  assumption  of  uncorrelated  residuals  is
violated,  a  spatially  varying  coefficient  model  is  added  to
account  for  the  association  through  a  decreasing  function  of
distance and perhaps direction between observed locations [6].
Taking  into  consideration  the  residuals  uncertainty  in  our
model,  especially  when  we  are  studying  complexity  due  to
potential  space-varying  and  dependent  relationships  between
the predictors and the response, can improve the inference. It
also increases prediction accuracy and precision; this is further
discussed by Cressie,  N et al.,  2009 [7].  The Geographically
Weighted Regression (GWR) detailed by Brunsdon, C., 2002
[8] and the hierarchical modelling techniques using Bayesian
Spatially Varying Coefficient Process (BSVCP) discussed by
Assunçao, R.M., 2003 [9] are the commonly used methods to
analyse such data. In the previous studies [6, 8, 10], it has been
shown that BSVCP model has outperformed the GWR model
in the estimation and validation of results.

The  study  by  Hu  et  al.  2011  [11]  used  the  hierarchical
Bayesian model to map the distribution of under-five mortality
in the Wenchuan at the township scale. The study confirmed
that  the  Bayesian  approach outperforms other  methods  in  its
smoothing effects as well as in the exploration of the different
aspects  of  the  patterns.  Li  et  al.  2019  [12]  used  binomial
likelihood with fixed effects for the urban/rural stratification to
account  for  the  complex  design.  They  produced  yearly
estimates for subnational areas in Kenya over the period 1980 -
2014 using the KDHS data set. They carry out smoothing using
Bayesian  hierarchical  models  with  continuous  spatial  and
temporally  discrete  components.  Their  study  discovered  that
there had been a sharp decline in the U5M rate in the period
1980  -  2014,  but  significant  variability  in  the  estimated
subnational rates remains. Luchemo, O.E., 2017 [13] used data
from the  Kenya  AIDS indicator  survey  for  2007,  which  was
stratified  in  two-stage  cluster  sampling  design,  he  started  by
fitting  the  univariate  standard  logistic  model  between  every
single  covariate  with  the  outcome variable  (HIV and HSV-2
status). The covariates that showed the significant effect on the
outcome  variable  were  applied  to  8  models  he  created,  of
which four were stationary. The other 4 were spatially varying
coefficient  models.  His  study  showed  that  spatially  varying
coefficient  models  outperform the  stationary  models,  and  he
also presented his results on the choropleth maps to show how
each  covariate  affects  each  outcome  variable,  which  is
distributed across Kenya. However, the above first two studies
and other studies in the literature use the likelihood with fixed
effects  for  urban/rural  stratification  to  account  for  complex
design.  This  study  follows  the  Bayesian  modelling  that  uses
structured  and unstructured  random effect  for  modelling  and
mapping. Our objective in this paper is to perform the spatial
modelling analysis while relaxing the stationarity and linearity
assumptions  through  Bayesian  spatially  varying  coefficient
process and random walk of order 2, respectively, to model the
Lesotho 2014 Demographic and health survey data set.

2. DATA AND METHODS

2.1. Data Source and Variables

In  this  study,  we  used  the  dataset  from  Lesotho
Demographic  and  Health  Survey  (LDHS)  collected  in  2014.
Rutstein,  S.O.,  2000  [14]  states  that  the  Demographic  and
Health Survey (DHS) is said to be one of the world’s largest
surveys  with  birth  histories  of  women  of  reproductive  ages
from which infant  and child  mortality  rates  are  derived.  The
survey was conducted in union with the Bureau of Statistics of
Lesotho  and  Inner-City  Fund  (ICF)  Macro  that  provided
technical  assistance.  The  fieldwork  for  2014  from  22
September,  2014  through  7  December,  2014.  These  LDHS
followed a two-stage sample design and was planned to permit
estimates of key indicators at  the national level as well  as in
urban and rural areas, and each of Lesotho’s ten districts. In the
first  stage,  clusters  consisting  of  enumeration  areas  were
selected  from  2006  population  Census  areas  for  2014,
comprising  of  400  clusters  (306  and  284  in  the  rural).  The
second stage included a systematic sampling of households. A
three-model  questionnaire  for  DHS  was  taken  into
consideration,  which  comprised  of  men,  women,  and
households. The number of women aged 15-49 interviewed in
2014 LDHS was 6621 out of 6818 eligible. The data used in
this  study  comprised  both  categorical  and  continuous
covariates.  The  variables  were  categorized  into  two  groups,
namely:  demographic  and  social  characteristics.  From  the
initial  analysis,  it  was  observed  that  the  level  of  education,
place  of  residence,  current  breastfeeding,  and  the  number  of
children 5 or under were found to have an association with the
child status, as shown in Table 3.

2.2. Statistical Model

The  binary  logistic  regression  model  is  a  statistical
technique  that  is  usually  used  when  there  are  one  or  more
predictor  variables;  and a  response variable  that  is  measured
with  a  dichotomous  (binary)  structure  [15].  Initially,  a  non-
spatial  data  analysis  was  carried  out  using  a  binary  logistic
regression  model  to  describe  the  relationship  between  the
binary  variable  of  interest  (Child  is  dead  coded  as  1  and
otherwise  0)  variables  and  other  covariates.  The  association
was considered at a 5% level of significance, as shown in Table
3. Let yij be the child j status in district i, with yij = 0, if a child
is  dead  and  1  otherwise.  Thus,  a  region,  location  or  similar
structure contains a cluster of observations. In this study, we
assume  that  the  response  variable  yij  is  univariate  Bernoulli
distributed,  that  is  yij|pij~Benoulli(pij).  The  p  continuous
independent  variables  are  contained  in  the  vector  Xij  =  (xi1,
xi2,...,  xip)'  while  Wij  =  (wi1,  wi2,...,  wir)'  contain  r  categorical
independent random variables.

In most cases, smoothing techniques play a vital role in the
non-parametric  regression  approach  [16].  The  penalized  (P-
spline) regression proposed by, for example, Eilers, P.H. et al.,
1996  [17],  has  been  extensively  used.  In  this  case,  the
polynomial  spline  is  assumed  to  approximate  the  effect  of
continuous covariates. Here, the P-spline model is linked with
the Random Walk (RW) prior to the Bayesian framework, and
the Bayesian inference for the P-spline model is used via the R-
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INLA package. They assume RW prior for an equally spaced
location  such  that  yi~N(f(xi,  σ2

ϵ)  and  without  the  loss  of
generality, the observation is assumed to be ordered as x1 < x2

...  <  xn  and define di  = d  for  i  = 1,...,  n -  1  where d  is  some
constant. To understand how this RW prior brings smoothness
to  the  fitted  function,  we  consider  the  full  conditional
distribution  p(f(xi)|f-i)  where  f-i  denotes  all  the  elements  in  f
except  f(xi).  The  distribution  turns  out  to  be  normal  with  a
mean that is a weighted average of function values that come
from the neighbours of xi. The full conditional distribution of
the second-order (RW2) priors is Eq.(1)

(1)

where we can see the conditional independence properties
of the two models: mean of f(xi)  only depends on its second-
order  neighbours  and  is  conditionally  independent  of  those
outside  the  neighbourhood.  This  local  structure  applies
smoothness to the estimated function. The areal data is a type
of  vital  spatial  data,  where  observations  are  related  to  a
geographic  region  with  adjacency  information.  In  order  to
smooth  the  data,  in  this  case,  a  neighbourhood  structure  is
constructed.  In  most  cases,  two  regions  are  said  to  be
neighbours if they share a common border, but other ways to
define neighbours are possible. Under RW models, a Gaussian
increment is defined between neighbouring regions i and j as
(Eq.2)

(2)

where xi and xj represent the centroids of the regions, and
wij are the positive and symmetric weights. We can let wij = 1 if
we believe region i equally depends on its neighbours, or wij be,
for example, the inverse Euclidean distance between the region
centroids  if  we  think  the  neighbours  somehow  contribute
differently.  Assuming  the  increments  are  independent,  the
resulting  density  of  f  =  (f  (xi)...f(xn))'  is  again  multivariate
normal with mean zeroes and precision matrix σ-2

fQ where Q is
the highly sparse matrix that has entries (Eq.3)

(3)

where   the  summation  over
neighbours of region i. Since the sum of each row is zero, Q is
of  singular  rank  n-1.  We  can  show  that  the  full  conditional
distribution prior to p(xi) is normal (Eq.4)

(4)

where  the  conditional  mean  of  p(xi)  depends  on  its
neighbouring  nodes  p(xj)  through  weights  wij,  and  its

conditional variance depends on weight sum wi+. We call this
prior  to  a  Besag  model  because  it  is  a  special  case  of  the
intrinsic autoregressive models introduced by Besag, J. et al.,
1995 [18].

2.3. Parameter Estimation

In  this  study,  we  used  the  fully  Bayesian  estimation
technique where parameters were assigned prior distributions.
Based on the information of various research sources [19 - 21],
more suitable user-defined hyper priors have been given using
suitable expressions in INLA. Specifically, the non-informative
normal distribution prior was used for the fixed effects, while a
random  walk  model  of  order  2  was  used  for  the  continuous
covariate age at  the death of an under-five child.  The spatial
components  were  the  CAR  model  for  the  structured  random
effects  [12].  The  posterior  distribution  is  obtained  after
combining the prior distribution with the observed data. In this
paper,  we  used  the  fully  Bayesian  strategy,  and  the
implementation  to  obtain  inferences  for  the  latent  Gaussian
models was performed through the R software using the INLA
function.

2.4. The Criteria for Model Selection

The  models  were  compared  using  the  Watanabe-Akaike
Information Criterion (WAIC). The best model is the one with
the smallest WAIC. The WAIC is obtained as WAIC = pw1 +
pw2,  where  pw1  indicates  the  expected  log  pointwise  posterior
density for a new dataset and pw2 denotes the effective number
of parameters [20].

2.5. Application/Data Analysis

The  following  models  were  used  to  investigate  and
understand  the  effect  of  the  observed  covariates  and
unobserved effects on the distribution of under-five mortality
with reference to 2014 LDHS data using INLA library in R.

Model 1

Model 2

Model 3

Model 4

Model 5
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Model 6

Model 7

Model 8

Where

• βO is the intercept representing the logit prevalence rate,
where all covariates have zero value.

•  f(age)  represents  a  function  of  age.  Here,  age  is  a
continuous predictor model with a non-linear smooth function:
the RW2.

•  Z  T
γ  represents  the  vector  of  categorical  predictors  for

child  j  living  in  district  i  with  γ  represents  the  regression
coefficient  for  the  spatial  model.

•  fu(Si)  represent  spatially  unstructured  random  effect,
which  caters  to  the  unobserved  predictors  that  are  inherited
within districts specified by the identically and independently
distributed (iid) normal distribution.

• fs(Si) represents spatially structured random effect, which
allows for some unobserved predictors which differ spatially
among districts,  specified  by  the  Conditional  Autoregressive
Regression (CAR) model.

Model  1:  We  assume  fixed  categorical  predictors  with
linear effects on the dependent variable. In this model, age is
modelled  as  having  a  non-linear  effect  on  the  response;  this
agrees with the results from [20, 21] who supports modelling
age  with  non-linear  smoothing  prior.  Model  one  is  a  non-
spatial model; here, the risk is modelled independently.

Model 2: This is an additive model that assumes the linear
effect of the categorical predictors, the non-linear effect of the
continuous predictor.

Model  3:  This  model  explores  the  effect  of  the  linear
predictors in Model 1 above, non-linear predictor and spatially
structured random effect, which accounts for any unobserved
predictions which differ spatially among districts, specified by
CAR model.

Model 4: This model studies the convolution of spatially
structured and spatially unstructured random effects specified
by the CAR model and the iid normal distribution respectively
while taking into account the non-linear effect of age and linear
effect of categorical predictors.

Models 5-8 They are similar to models 1 to 4, respectively.
The only difference is that the regression coefficients γ in these
models  are  assumed  to  violate  or  relax  the  stationarity
assumption  and  are  assigned  the  CAR  priors  to  allow  for
spatially  varying  covariate  effects.

3. RESULTS

3.1. Model Selection

In  Table  1,  there  is  Watanabe-Akaike  Information
Criterion  (WAIC)  for  the  four  separately  fitted  models  for
U5M  under  the  stationary  covariate  effect  assumption  are
displayed.  The four  models  were assumed to have stationary
coefficients. Model 3 has the smallest WAIC of 880.63; hence
it is preferable. Table 2 shows the WAIC for the four spatially
varying  coefficient  models.  From  Table  2,  we  can  see  that
model  8  has  the  smallest  WAIC  of  853.04.  Therefore,  this
model  provides  the  best  fit  for  U5M.  We,  therefore,  present
and discuss the results based on model 3 under stationarity and
on model 8 to allow covariates to vary spatially by the CAR
model.  Model  3  captures  the  structured  effects,  but  model  8
captures both the structured and unstructured random effects on
U5M.

Table 1. Stationary Models.

Model 1 Model 2 Model 3 Model 4
pw1 4.97 5.45 7.72 3.09
pw2 966.71 881.34 872.93 883.79

WAIC 971.68 886.79 880.63 886.88

Table 2. Spatial varying Coefficients Models.

Model 5 Model 6 Model 7 Model 8
pw1 11.62 29.12 96.42 53.65
pw2 910.01 824.36 900.87 799.39

WAIC 921.63 853.48 997.29 853.04

Table 3 shows that the odds of death for children who were
not breastfed are 4.6 (95%: 3.16;6.69) times the odds of death
for  children  who  were  breastfed,  and  the  difference  is
statistically significant since 95% does not include one (p-value
< 0.001). Children who reside in the urban area has better odds
of surviving 0.697 (95% 0.50;0.98) less than the odds of those
from the rural area, and the difference is statistically significant
since (p-value < 0.036). Children with mothers with secondary
and higher  education have lower odds of  0.808 less  then the
odds  of  children  with  mothers  with  none  and  primary
education, and the difference is statistically significant (p-value
<0.008). More than two children aged below 5 in the household
contribute to under-five child mortality with the odds of 2.11
(95%: 1.87;4.5) times the odds for children who are less than
two, the difference is statistically different (p-value < 0.001).
Therefore,  in  this  data  analysis,  it  is  shown  that  level  of
education,  place  of  residence,  current  breastfeeding,  and  the
number  of  children  5  or  under  were  found  to  have  an
association with the child survival status as shown in Table 1.
In this case, the child age at death has a nonlinear effect on the
child survival status, hence its continuous form (mean = 4.43
and  std.  Deviation  =  6.833  for  2004;  mean  =  5.27  and  std.
Deviation  =  8.215  for  2009;  and  mean  =  4.88  and  std.
Deviation = 7.663 for 2014).  Hence, these variables from no
spatial regression (Model 1) are investigated using the spatial
model in the preceding sections of this paper.

All  the  proposed  covariates  were  found  to  be  associated
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       (   )      (   )        (  ) 

       (   )      (   )        (  )    (  ) 
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with  the  U5M,  as  shown  in  Table  4.  The  odds  of  dying  for
under-five  children  from  mothers  who  had  secondary  and
higher education level was statistically significantly less than
the  odds  of  dying  for  children  from  mothers  with  none  or
primary education (OR=0.38, 95% CI: 0.26, 0.50). The odds of
under-five mortality for children who were breastfed are 0.38
times  for  those  who  were  not  breastfed  (OR=0.38,  95%  CI:
0.17,  0.59).  Children  who  were  staying  in  urban  areas  had
statistically  significantly  better  odds  of  surviving  than  those
living in rural areas (OR = 0.27, 95% CI: 0.16, 0.39). The odds
of dying for a child below 5 years old if  they were less than
two in the household, was statistically significantly less than
those who were two or more in the household (OR = 0.38, 95%
CI: 0.25, 0.52). Fig. (1) shows the choropleth maps of the risk-
based on model 3, the standard error and the associated 95%
credible interval. From these maps, we can observe that Butha-
Buthe  district  (shown  by  orange  colour)  and  Mokhotlong
(shown by lime colour) were predicted to have the smallest risk
pattern  of  U5M  and  the  highest  risk  pattern  was  found  in
Mafikeng district (indicated by red colour). Generally, the low-
risk pattern of  U5M occurs  in  the North of  Lesotho,  and the
highest  occurs  in  the  central,  South,  East,  West,  South-East,
and North-West.

3.2. Spatially Varying Effect

The choropleth maps in Fig. (3) suggest that the effect of

some of the covariates indeed do differ spatially. The effects of
education, type of residence, and the number of children five or
under on U5M are more in Butha-Buthe (shown in red colour)
and  less  in  Berea  (shown  in  orange),  respectively,  but  the
current  breastfeeding  is  very  low  in  Butha-Buthe  (shown  in
green colour) and high in Maseru (shown in red colour). The
effect of proposed covariates is similar in almost six districts
(Quthing,  Mohale’s  Hoek,  Mafikeng,  Maseru,  Thaba-Tseka
and  Qacha’s  Neck).  Furthermore,  current  breastfeeding  has
more  effect  on  U5M  from  central  to  almost  seven  districts
located in the South, South-East, South-West (indicated in red
and maroon colours).

3.3. The Non-linear Effect of Age

Fig. (2) gives the posterior mean of the smooth function,
estimating the effect of age as a non-linear effect together with
its 95% confidence interval. From the figure, there is evidence
that  the  impact  of  age  at  death  on  U5M  has  positive  and
negative implications. The effect is linear from birth until 20
months  and  increases  after  20  months  toward  50  months.
Hence, the higher child mortality is associated with child age
for  more  than  20  months  children.  This  increasing  of  U5M
with  rising  age  could  be  a  result  of  nutrient  scarcity  in  their
diet, which may render them vulnerable to many infectious and
other diseases than those below 20 months who were still likely
to be breastfed.

Table 3. Exploratory non-spatial logistic regression data analysis for U5M.

Variable Std Error P-value OR (95% CI)
Demographic characteristics:
Place of residence (ref Rural) 1

Urban 0.172 0.036 0.697(0.498;0.976)
Age of Household head (ref Less than 34 years) 1

More than 34 years 0.156 0.476 0.985(0.659;1.215)
Sex of child (ref Male) 1

Female 0.141 0.315 1.152(0.874;1.520)
Birth order (ref Less than 2 births) 1

More than 2 births 0.156 0.271 0.875(0.690;1.109)
Marital status (ref Not married) 1

Married 0.168 0.791 1.602(0.764;1.477)
Current breastfeeding (ref Yes) 1

No 0.191 0 4.598(3.160;6.690)
Social Characteristics:

Wealth Quantile (ref poorest)
Poorer 0.406 0.442 0.732(0.330;1.622)
Middle 0.402 0.297 0.658(0.299;1.446)
Richer 0.397 0.297 0.661(0.304;1.438)
Richest 0.398 0.152 0.565(0.259;1.233)

Education level (ref none and primary) 1
Secondary and higher 0.227 0.008 1.808(1.171;2.791)

Mother currently working (ref No) 1
Yes 0.236 0.235 1.323(0.833;2.099)

Number of children 5 or under (ref Less than 2) 1
More than 2 children 0.222 0 2.911(1.867;4.538)
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Table 4. The estimated OR with the corresponding 95% credible interval based on Model 3.

Covariates (95% CI)
Residence (Rural)

Urban 0.27(0.16;0.39)
Current breastfeeding (No)

Yes 0.38(0.17,0.59)
Education (Non & Primary)

Secondary & Higher 0.38(0.26;0.50)
Number of children 5 or under (2 or more)

Less than 2 children 0.38(0.25,0.52)

Fig. (1). Maps of under-five mortality risk in Lesotho predicted from model 3.
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Fig. (2). Figures depicting the effect of continuous age at death on U5M for the years 2014.

Fig. (3). Spatially varying effects of covariates on Child survival status.
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4. DISCUSSION

The  2014  Lesotho  Demographic  and  health  survey  data
was used, where the fully Bayesian approach was performed to
model the spatial variation of under-five mortality. This study
found  that  the  effect  of  covariates  on  under-five  mortality
varied  spatially;  however,  the  spatially  varying  U5M  model
was significantly different from the stationary one. The major
advantage of the spatially varying model is that it can show the
effect  of  each  covariate  on  U5M  in  each  district  [12,  22].
Education,  type  of  resident,  and  the  number  of  under-five
children  in  the  household  had  more  effect  on  U5M  in  the
Butha-buthe district.  Mothers with better  education are more
likely to adopt alternatives in child care and new treatment and
do the family planning to avoid more under-five children in the
house.  They  are  also  more  likely  to  reside  in  the  places  that
have  well  equipped  medical  facilities  and  good  sanitation
infrastructure  [23,  24].  Breastfeeding  had  a  most  significant
effect on almost the whole of Lesotho; this might suggest that
mothers  of  under-five  children  should  be  encouraged  to
breastfeed  their  children  through  education  and  awareness
sessions.  According  to  World  Health  Organisation  (WHO),
breastfeeding  for  six  months  is  recommended  (for  HIV
mothers) and continue feeding along with complimentary food
in  connection  with  antiretroviral  therapy  is  the  best  way  to
overcome mother to child infection to HIV. Age at death of an
under-five  child  was  found  to  have  a  non-linear  effect  on
under-five mortality. The effect if linear from birth until month
20, where it increases towards month 50. Therefore, this study
found that higher child death is associated with children whose
age is more than 20 months. These studies were also confirmed
by Luchemo, OE., 2017 [13], who showed that the likelihood
of malaria infection increases with child age.

To  our  knowledge,  this  study  is  the  first  to  do  spatial
modelling  in  Lesotho  using  the  newly  developed  Statistical
models which are able to capture data complexity. We assume
that  the  analysis  of  the  present  work  will  be  used  to  public
matter policymakers in their effort to mitigate U5M in Lesotho,
by allowing them to understand the areas they need to focus on,
in  order  to  enhance  the  planning  and  evaluation  of  health
policies to prevent the under-five mortality.  Studies like [12,
13, 22] support our findings.

CONCLUSION

In this study, we explored the existing statistical models for
mapping and modelling as used in the Bayesian framework and
determined the distribution of U5M in Lesotho. We used the
recently  refined  Integrated  Nested  Laplace  Approximation
(INLA)  package  that  exists  in  R  software.  We  applied  these
models  to  under-five  mortality  (U5M).  These  models  only
catered for areal (lattice) data. Geostatistical and point pattern
data were not considered in this research. The data used in this
study  was  taken  from  Lesotho  Demographic  and  Health
Surveillance (LDHS) for 2014. The non-linear effect of age at
death of  an under-five child  was modelled using the random
walk of order 2 (RW2), while the spatially structured effects
and spatially unstructured effects in the model were modelled
using  the  Gaussian  Markov  Random  Field  and  a  zero-mean
Gaussian  process,  respectively.  In  this  study,  we  fitted  four

stationary models and used the best fitting model to estimate
the  risk  pattern  of  the  U5M  in  Lesotho.  We  also  fitted  four
models that allow the effects of the covariates to vary spatially
by using the conditional autoregressive model, the best model
in  terms  of  small  is  Watanabe-Akaike  Information  Criterion
(WAIC)  which  was  used  to  map  LDHS  data  for  2014.  The
spatially varying coefficients  models  developed in this  study
are  assumed  to  provide  better  smoothing  than  the  stationary
models because they give a covariate effect on UM5 on each
district.

In  the  future,  we  can  take  into  account  the  method  of
covariate measurement error using Bayesian techniques. This
will  ensure  that  all  available  data  is  used  in  mapping  and
modelling. Since most diseases that contribute to U5M attacks
children  immunity,  then  studies  on  the  relationship  between
resistance  to  infection  and  U5M  may  help  in  informing
strategies of reducing infections and hence mortality. Knowing
how  the  under-five  death  is  affected  by  different  variables
together with time and location can help in tracing the trend of
U5M  and  describe  spatial  distribution  over  time  through
spatiotemporal modelling as Luchemo, O. E. 2017 [13] did. He
extended  the  spatially  varying  coefficient  process  model  by
adding  the  effect  of  time  and  apply  the  model  to  malaria
prevalence  data.
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